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Ahsirad. The complete Lie algebra of classical infinitesimal symmehies of the nonlinev 
diffusion-convection equation in two and three dimensions is presented. Except for some cases 
involving constan1 diffusivity. a cnmplete reduction lo an ordinary differential equation is not 
possible. However, closed-form solutions are obtained for special forms of both the 2D and 3 0  

nonlinear diffusionanvection equarions. using a symmetry reduction and an additiond physical 
constraint. This extends the small List of closed-form hansient solutions already known. 

1. Introduction 

The nonlinear diffusion-convection equation 

a u  dK au - = V * ( D ( u ) V U )  - -- 
at du az 

with V the Laplacian operator in N spatial dimensions ( N  = 1 , 2  or 3) has a variety of 
applications to porous media, including displacement of one liquid by another (Fokas and 
Yortsos 1982). unsaturated flow (Klute 1952), transport of a solute with adsorption to pore 
surfaces (Rosen 1982), and saturated flow in a swelling medium (Smiles and Rosenthal 
1968). D(u) is the concentration-dependent diffusivity and, based on Darcys’ law (Klute 
1952) for hydrological flows, K %rill be viewed as the concentration-dependent conductivity. 

Because of its practical importance, much work has been devoted to constructing exact 
and approximate solutions to (1).  Timedependent solutions have been found mainly in 
one spatial dimension. These solutions are of two types. The first type relies on special 
integrable models which can be transformed to the linear diffusion equation. The integrable 
models are the Burgers’ equation (Clothier ef al 1981) (where D is constant and K is 
quadratic), and the Fokas-Yortsos-Rosen equation (Fokas and Yortsos 1982, Rosen 1982) 
(where D(u) = a/(b - U)*, K‘(u) = A/2(b - u ) ~  with a, b and A constant). In the 
second method of solution, similarity solutions follow from classical Lie symmetry group 
reductions when D(u) is a power law or an exponential (Oron and Rosenau 1986). 

For higher dimensions, much less is known. Unlike the one-dimensional case there are 
no linearizable models in two dimensions (Broadbridge 1986) and we doubt that integrable 
models exist in three dimensions. Next we turn to the other best known approach for 
obtaining exact solutions. In  section 2 classical Lie group symmetries are investigated for 
the general class of equations ( 1 )  in two dimensions. We find that the only forms which 
have additional symmetries, beyond translations and rotations, are with power-law, log 
and exponential functions for D(u) and K ( u ) .  Full reduction to an ordinary differential 
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equation (ODE) is possible in only one case, the 2D Burgers' equation, i.e. D constant and 
K (U) quadratic. 

Recently, Philip and Knight (1991) have obtained a two-step reduction to an ODE for 
power-law forms of D ( u )  and K ( u )  where ( I )  is expressed in polar coordinates. Solutions 
obtained in this way follow neither from integrable models nor from two-stage classical 
symmetry reductions. We show that only the first stage of this technique is the result of a 
classical group reduction. In fact, the reduced equation after the first step can be shown to 
have no classical symmetries. The reduction used by Philip and Knight has a power-law 
time dependence. However, their solution method does not apply to the case D = uVL in 
two dimensions or to the case D = u-'I3 in three dimensions. In sections 3 and 4 we 
extend the method of Philip and Knight to these singular cases. We find that for these 
special cases, we obtain a much wider set of solutions than are available in any other single 
model. 

M P Edwards and P Broadbridge 

2. Lie group sj lnmetry analysis 

We consider the classical Lie group symmetry analysis of the class of equations (1) in two 
dimensions. However, we are no longer specifically concerned with unsaturated flow in a 
porous medium, but in the general equation, so that D(u) and K ( u )  are completely arbitrary. 
We then identify any special forms of D and K which possess additional symmetries. 

u * = e f r u  = u + ~ U ( x , z , t , u ) + O ( ~ ~ )  & = e f r t = t + ~ 7 ( ~ , ~ , t , ~ ) + O ( ~ 2 )  

x* = e x = x  +EX(X ,Z ,~ ,U)+O(E* )  e , = e  z = Z + E Z ( X , Z , ~ , U ) + O ( E ~ )  

where 

We consider the infinitesimal transformation 

rr er (2) 

a a a a ~=X-+Z-++-+U- ax az at au 
is the infinitesimal generator (Olver 1986. Bluman and Kumei 1989). We then extend (2) 
to first and second order by the prolongation formulae, for example, 

where 

and DfDx is the total derivative operator with respect to x 
aF a~ D 

- F ( x ,  z, t ,  U) = - + U,- Dx ax au 
Invariance of the goveming equation (1) under the infinitesimal transformation (2) and 
assuming that the derivatives of U are independent leads to a set of determining relations, 
which are linear partial differential equations (PDEs) in X, Z , 7  and U. The symmetry 
analysis was performed using the software package Dimsym under Reduce (Shening 1993). 

For totally arbitrary D and K,  the only symmetries are the generators of the space and 
time translations 

a a rz = - a r, = - 
ax az at 

r 3 = - .  
Up to a linear change of variables, the only functional forms of D(u)  which have extra 
symmetries are power law and exponential. In table 1, I-', , rz and r3 are not listed, as they 
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Table 1. Symmetries for the 20 diffusion+"ction equation m, n E I. 

are common to all cases. We do not list the case K'(u) constant as this can be transformed 
to the case of pure diffusion, analysed fully by Galaktionov er al (1986). 

Unlike the one-dimensional Burgers' equation, the two-dimensional Burgers' equation 
(D constant, K quadratic) cannot, in general be transformed to a linear equation 
(Broadbridge 1986). However, the two-dimensional Burgers' equation does have special 
symmetry properties. It is the only two-dimensional form of (1) that has a fifth symmetry. 
The two non-trivial symmetries r4 and I's are compatible because they obey the simple 
commutation property [ r d .  rsl = rs. Hence, the two-dimensional Burgers' equation is the 
only two-dimensional nonlinear convection-diffusion equation that can be fully reduced to 
an ODE by classical Lie symmetry reductions. 

3. Exact solutions for a 2D nonlinear diffusion-eonvection equation 

We transform (1) from Cartesian space coordinates ( x ,  z )  into cylindrical polar coordinates 
(r3 Y) by 

x = r sin y z = r c o s y  

to obtain the nonlinear PDE 

If we assume power-law functions for D(u) and K'(u) ,  (i.e. D(u)  = U'", K'(u) = U"). then 
the appropriate symmetries are 

a COSY a a siny a 
rl = siny- + -- r2 = cosy- - -- 

ar r ay ar r ay 
a a a 

r4 = (m -2n)t- + (m - n ) r -  + U-. 
a r, = - 
at at ar au 

(5) 

For total material conservation, Philip and Knight (1991) assume the ad hoc functional form 

(6) U = F(p .  y)t-" p = rt -  ./z 

and show that the values of CY and n must be 
1 

m + l  
If we consider the symmetries (5). this gives 

n = m + $  m # - 1 .  cl=- 

a a  a 
at  ar a u  

r4 = 2(m + 1)t- + r -  -2u- .  (7) 

.. . 
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From this symmetry we obtain the characteristic equation 

M P Edwards and P Broadbridge 

du - -- dr dy dt 
r 0 2(m + 1)t -2u 

which may be solved to yield the functional form 

U = F(P, v)t- 

_ = _ =  

m # -1 (8) I / (m+l)  = r t - 1 / 2 ( m t l )  

which is precisely the form used by Philip and Knight (1991) to obtain a reduction of 
variables. The special case m = - 1  is excluded from this reduction. The ad hoc functional 
form assumed by Philip and Knight (1991) is incapable of treating the case m = -1. Our 
systematic symmetry approach identifies the correct invariant variable substitutions not only 
for their cases but also for this exceptional case. This shows that a systematic symmetry 
analysis obviates the need for a case by case search for appropriate variable substitutions. 

From the work of Philip and Knight (1991) which makes no reference to symmetry 
analysis, it is not clear how to treat the special case m = -1. This inverse linear case arises 
specifically in the analysis of a diffusing electron cloud in thermal equilibrium (Lonngren and 
Hirose 1976). In the hydrology context, it  has two applications. Firstly. in rigid field soils 
containing biomacropores, the soil water diffusivity may be weakly increasing (Clothier 
and White 1981). Such a diffusivity may well be represented by D ( e )  = a(b - e)-' 
with b greater than the porosity. Secondly, in a saturated swelling paste, the effective 
material diffusivity may be a weakly decreasing function which could be represented by 
&(a) = a(b + + ) - I  (Broadbridge 1990). 

For the case m = -1, the symmetry (7) used above may be replaced by 
a a F4 = r -  - 2u- ar au 

If we now consider a linear combination of r3 and r4, then for m = -1, the characteristic 
equations take the form 

dr dy dt du 
r 0 f l  -2i 

where 6 E 8, ,9 # 0. These may be solved to obtain 

U = ~ ( p ,  y)e-"/fi 

- = - = - = -  

p = re-'/#, 

If we let c = 2/fl, then 
U = F ( ~ , y ) e - ~ '  p = r e  -nf2 . 

This will lead to a reduction by one of the number of independent variables of the PDE (4). 
This form of U also ensures total conservation of material, so for this case m = -1, we can 
also seek a solution of (4) by extending the method of Philip and Knight (1991). 

In fact, for this case, the functional form involves an arbitrary constant c, which will 
mean greater variability in the solution. We also note that, unlike the functional form (6) 
with power-law dependence on f ,  the new solution (9) has the additional advantage that it 
is finite for t =O. It is worthwhile noting that although a functional form 

U = F(p, y)e-'I8 p = re n r / a  

is valid in general when m = 2n, it is only when n = -4, i.e. when m = -1, that the 
global material conservation condition is satisfied. 

This condition requires zero flux at the origin. That is 

(10) for t > 0 r = O  -=  2cosyu3/2. 
ar 
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Substitution of (9) into (4) and (IO) gives 

(11) 

2cos y F3I2.  (12) 

with the zero flux condition becoming 
a F  -=  

" O  P = o  ap 
As in the case of similarity variables with power-law time dependence (Philip and Knight 
1991), the similarity reduction (9) implies that the flux has no component normal to the 
radii. This provides a constraint 

which allows us to make a further reduction of variables, even though classical symmetry 
provides no alternative additional constraint. For our purposes, the only significance of 
global mass conservation is that it provides an extra restriction (13) which allows us to make 
a further reduction of variables. Without this extra restriction of global mass conservation, a 
further reduction of variables could be made possible by an additional symmetry. However 
we have found (table 1) that the extra symmetry exists only for the case of the 2D Burgers' 
equation. Of course, each diffusion-convection equation (I), being a conservation equation, 
locally conserves material, even if it is unbalanced globally due to boundary conditions. 
However, it is only the global mass conserving solutions that allow this further reduction. 

Taking (-l/p)(a/ay) of (13) and substitution of this expression into (11) leads to 

an ODE for each value of y .  This may be integrated with respect to p ,  with the constant of 
integration eliminated through use of (12). Thus we wish to solve the first-order ODE 

subject to the condition 
p = O  F = F o > O .  

If we let q = F-l then (15) becomes 
aq  - = -2cos yq"2 + 1, z p  
ap 

subject to p = 0. v = 70 = F;' . 
The ODE (16) may be solved exactly (Kamke 1959) to give the solution (for c t 0)  

2 c o s y / ~  

. (17) 1 ) = (  21'12 + p(c0s y + J-) 
217112 + p(c0s y - vGzjGT)  ( r l +  Pq'/z;Y - tcp' 

The case c < 0 implies a physically unappealing solution which increases exponentially in 
f .  For such a globally mass-conserving solution to a dissipative equation, this backward 
evolution cannot occur if the solution is smooth. For example, from the analogous solution 
to (17) but with c < 0, we find that along the ray y = a/2, the solution is given by 

e-e' 

[qo  + CP2/41 
U =  (18) 
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x exp(c U2) 
z exp(c U2) 0 .l 

Figure 1. Plot of (17) for c = 5.0 and FO = 1.0. 
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Figure 2. Contour plot of (17) for e = 5.0 and Fo = 1.0. 

which is singular at p = 2 m .  
Previously, the reduction method of Philip and Knight (1991) has produced closed-form 

two-dimensional solutions only in the cases (m,  n) = (0, i) and (m. a) = (4, 1). Here, 
we have contributed an infinite family of new solutions whose character changes as the 
parameter c varies. 

In figures 1 and 2, the analytic solution is presented for a comparatively large value 
c = 5.0 and FO = 1.0. Since time is incorporated in the spatial similarity variables, 
the figures display the solutions at all times. In this case, the initial condition is already 
displayed in figures 1 and 2 when we assume r to be zero. Compared to the initially singular 
solutions of Philip and Knight (1991). our solutions have the additional advantage of being 
finite at t = 0. As can be seen from figures 1 and 2, the initial condition is an almost 
symmetric distribution of material which could have resulted from a local injection. The 
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1.8- 

1.6- 

1.4- 

'7 80 

0--1 
X s X p ( C W  z exp(c 1/21 

Figure 3. Plot of (17) for c = 1.0 and Fo = 1.0 

O.zl S -0.5 0 0.5 1 

Y exp(c U2) 

Figure 4. Contour plot of (17) for c = 1.0 and Fo = 1.0. 

injected slug is allowed to spread, without extra material being supplied at the origin. 
In figures 3 and 4, the analytic solution is presented for a comparatively small value, 

c = 1.0 and Fo = 1.0. Again, the initial condition is evident when t = 0. The concentration 
peaks in figures 3 and 4 are steeper than in figures 1 and 2. The initial condition could 
have originated from an injection from a horizontal line segment source. 

We note that the solutions are symmetric about the plane x = 0. As c becomes larger, 
the solution reduces to a one-dimensional steady state. The onedimensional steady-state 
solution to (l), which has been used to model evaporation from a soil with a water table, 
can be obtained for arbihiuy D(u)  and K ( u )  (Gardner 1958). 
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4. The 3D nonlinear diffnsioir-convectIon equation 

For classical Lic group analysis of the class of equations (1) in three dimensions, we are 
again interested in the general equation, so that as in the 2D analysis, D(u)  and K ( u )  are 
arbitrary. Through symmetry analysis, we identify the special forms of D and K which 
possess extra symmetries. 

M P Edwards and P Broadbridge 

The infinitesimal transformations appropiate in this instance are 
G r  

C r  

U* = e  U = U  + E ~ ( x ,  y , z , t ,  U) +o(& 
r, = e r = t + < T ( x .  y , z , t , u )  + o(2)  
x. = etrx = x + E x(x, y .  z ,  t, U )  + 0(2) 
Y* = e  y = y + 6 y ( x , y , z , t S u )  +o(G’) 
zr = e f r z = z + s 2 ( x , y , z , r , u ) +  0 (2)  

er 

where the infinitesimal generator r (Olver 1986, Bluman and Kumei 1989) is 

a a a a a r = x- +y-  + 2- +7- +U- 
ax ay az a t  au 

Equation (19) is then extended to first and second order, so that, for example, 

where 

with D/Dx the total derivative operator with respect to x, 

For arbitrary D and K ,  the symmetries are 

a a r5 = y -  - x -  
a r, = - 

ax ay az a i  ax ay 
a rr = - a r3 = - a r2 = - 

where rl to r4 are the generators of space and time translations, and rs is the generator of 
rotations about the vertical axis. As in the ZD case, the only forms of D(u). up to a linear 
change of variables, which have additional symmetries are power law and exponential. In 
table 2, rl to r, are omitted, as they are common to all cases. The case K ’ ( u )  constant 
has not been included as this form of (1) can be transformed to the case of pure diffusion, 
fully analysed by Galaktionov et al (1986). 

The three-dimensional Burgers’ equation, like the 2D Burgers’ equation, is the case 
which possesses the most symmetries. The symmetries r6 and r? are compatible, as they 
obey the commutation propem [r6, r7] = r7. We utilize the symmetries in table 2 to 
obtain an exact solution to a 3D diffusion-convection equation. 

Equation (1) is transformed from Cartesian space coordinates (,r+ y, z )  into spherical 
coordinates (r,  y ,  $) using 

x = r s i n y c o s @  y = r s i n y s i n @  z = r c o s y  
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Table 2. Symmeuies for the 30 diffusion-nvection equation m,  n E 8. 

DW KW r, 

yielding the nonlinear PDE 

i a  
siny D(u)- + -- :;I rzsinz y ay 

- = -- [rzD(u)$] + - - 
rz sin y ay 

au 1 a 
at rz ar 

1 a u  siny a u  
cosy- - -- 

ar r ay 

Assuming power-law functions for D and K' (that is, D(u)  = U"', K'(u)  = U"), the 
symmetries from table 2 become 

a cosycos* a sin@ a 
ar r ay  rsinvatlr 

rI =sinycos@-+ . .  
a cosysin@ a cos@ a -+-- ar r a y  r s i n y  a@ rz = sin y sin 9- + 

a siny a r3 =cosy- - -- 
ar r ay 

a r4 = - 
at  
a r5 = - 

allr 
a a a 
ac ar au 

r6 = (m - 2n) t -  + (m - n)r- + U- 

Philip and Knight (1991) assume the functional form 

u = ~ ( p .  y ,  *) p = rt-*l3 

which ensures total material conservation. The values of LY and n are shown to be 

a=- 3 n = m + $  mp-3 
3 m i - 2  

However, from r6 (when ti # m). solving the characteristic equation 
du 

(m - n ) r  0 0 (m -2n)t  U 
-- - 

dy d@ dt - _ = _ =  - dr 

leads to the functional form 

(W 1 /(2n -m) = r t ( m - n ) / ( * l - m )  
U = V p ,  Y .  q)r- 

which will lead to a reduction of order of the PDE for general m and n ,  (n  # m). If we 
demand total conservation of material, we then obtain the form 

= .yp, y ,  * ) t - 3 / O m + z )  = rt - l /Om+2) m # -$ (25) 
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which is the same as that obtained by Philip and Knight (1991). We see that the case 
m = -f is not included by this reduction. In this case, r6 is replaced by 

M P Edwards and P Broadbridge 

and taking a linear combination of r6 and r7, the characteristic equation is 

dr dy d e  dt du 
r 0 0 p -3u 
_ = - = _ = - -  -- 

with p E I, p # 0. Letting c = 3/8 and solving leads to the functional form 

(26) 

We note that (26) always ensures total material conservation, and will lead to a reduction 
by one in the number of independent variables. As in the I D  special case, the arbitrary 
constant c leads to greater variability in the solution. 

= re-~f/3 U = F(p, Y, P) e-' 

Total material conservation requires zero flow at the origin: 

Substitution of (26) into (21) gives 

while the zero flux condition (27) becomes 

(29) 
for r > O  p = O  - - = ; c o ~ y F ~ / ~ .  aF 

ap 
The similarity reduction (26) implies that the flux has no component normal to the radii, 
as in the case of similarity variables with power-law dependence (Philip and Knight 1991). 
This means that we have the two additional constraints 

Utilizing these constraints reduces (28) to the ODE 

This may be solved exactly (Kamke 1959) to give the solution (c  > 0) 

where q = 1/F. The case c < 0 has been neglected to avoid singularities. 

two dimensions, except that Cartesian coordinate x is replaced by (xz + y2)'I2. 

Philip and Knight (1991) only in the cases (m, n )  = (0, f) and (m,n) = (f ,  $). 

Since this is axially symmetric, solutions are similar in appearance to those obtained in 

Closed-form solutions have previously been obtained using the reduction method of 
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